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Direct numerical simulation of horizontal convection driven by differential heating
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Abstract

A numerical study based on three-dimensional direct numerical
simulations are performed to investigate horizontal thermal con-
vection in a long channel at a large Rayleigh number, Ra. Dif-
ferential thermal forcing is applied at the bottom boundary over
two equal regions. The steady-state circulation is achieved after
the net heat flux from the boundary becomes zero. A stable ther-
mocline forms above the cooled base and is advected over the
heated part of the base, confining small-scale three-dimensional
convection to the heated base and end wall region. At the end-
wall a narrow turbulent plume rises through the full depth of
the channel. The less energetic return flow is downward in the
interior, upon which eddy motions are imposed. This work, for
the first time, focuses on the three dimensional instabilities and
structures of the flow. The conversions of mechanical energy
are examined in different regions of the flow (boundary layer,
plume and interior) and help to understand overall circulation
dynamics.

Introduction

Horizontal convection (HC) is driven by a horizontal difference
in temperature or heat flux at a single horizontal boundary of
a fluid. In a thermally equilibrated state net heat flux over
the boundary is zero and circulation cell involves a horizon-
tal boundary flow, turbulent plume motion at the end wall and
weak interior return flow, covers the entire the flow domain [5].
HC is of interest given [13]’s proposed model of the merido-
nial overturning circulation (also known as global thermohaline
circulation) based on a convective flow which is driven by a
horizontal surface temperature gradient.

Experimental observations [10] show a single convecting cell
of marked asymmetric structure. Based on a buoyancy-viscous
balance gave scaling the boundary layer thickness and the Nus-
selt number. Later, [7] and [1] revisited HC at higher Ra with
small aspect ratio. In their experiment, an unsteady, eddying
overturning circulation exists and establishes the density strat-
ification throughout the depth of the box. It is clear that HC
is remains an interesting problem in the context of its probable
role in global circulation of the ocean where the net heating and
cooling is applied over the sea surface at low and high latitudes,
respectively.

Nevertheless, contracting opinions exist among theoretical
oceanographers [8, 16, 9, 3, 6] regarding the capability of HC,
or more precisely surface buoyancy forcing, to contribute to
the circulation, some appealing to wind and tides as the only
sources of mechanical energy to maintain the observed stratifi-
cation in the abyssal ocean and drive the circulation. [9] have
derived expression for volume integrated dissipation rate and an
upper bound on this at infinite Ra which is later supported by [6]
using two-dimensional numerical simulation. [9] has also re-
stricted the HC from being a turbulent flow on the basis vanish-
ing dissipation vanishing diffusivity (hence at infinite Rayleigh
number). On the other hand recent 3D numerical studies by
[11] provide a different view about the dynamical nature of HC,
based on the geometrical statistics that indicate a turbulent flow.

Figure 1: Schematic of the domain used for the simulation: the
hot plate of temperature Th = 40 ◦C on the left-half of the base
(0 ≤ x < L/2) and the cold plate temperature of Tc = 10 ◦C on
the right half of the base (L/2 < x ≤ L). Superposed is a snap-
shot from the numerical of the horizontal velocity field, u(m/s)
in x-z plane at thermally equilibrated state.

Recently, [4], [14] provide the framework in which energy con-
versions in the global ocean can be understood. It is still unclear
what drives the circulation observed previously in the numerous
laboratory experiments [10, 7, 1] and the fully resolved 3D DNS
simulations [11] given the strong constraint on total dissipation
and on the net mount of conversion from potential to kinetic
energy. We therefore, use DNS to the examine energetics of
convection at large Rayleigh number.

Formulation of the problem

The simulation corresponds closely to conditions used in the
laboratory experiments by [7]. The channel domain has length
L = 1.25 m, height H = 0.2 m and width W = 0.05 m (in which
direction the domain is assumed to be periodic). Constant and
uniform temperatures Th = 40 ◦C and Tc = 10 ◦C are each ap-
plied over half of the base as shown in figure 1. All other bound-
aries are assumed to be adiabatic. The working fluid is water
with kinematic viscosity ν = 10−6 m2/s and thermal diffusiv-
ity, κT = 2×10−7 m2/s.

Governing equations

Direction numerical simulation (DNS) is used to solve dimen-
sionless the continuity, Navier-Stokes and temperature equa-
tions for linear Boussinesq fluid:

∇ ·u = 0,
Du
Dt

=−∇p∗+Pr∇
2u+RaPrT ∗k,

DT
Dt

= ∇
2T
(1)

where the dimension quantities u = (u,v,w) is the velocity
field and and T is temperature, p∗ is deviation from the back-
ground hydrostatic pressure, T ∗ denotes the deviation from the
background state and t is time. The governing equations have
three nondimensional parameters: Rayleigh number Ra, Prandtl
number Pr and aspect ratio, Ar , where

Ra≡ αT g∆TdH3

νκT
, Pr ≡ ν

κT
, Ar = H/L . (2)

Here dimensional quantities in the problem are horizontal tem-
perature difference at the bottom boundary ∆Td , length of the
channel, L, H and the fluid properties: molecular viscosity, ν,



thermal diffusivity, κT , thermal expansion coefficient, αT , and
reference density, ρ0.

The variables are nondimensionalized as follows:

t =
td

L2/κT
, x = (x,y,z) =

(xd ,yd ,zd)
L

, p∗ =
p∗d

ρoκ2
T /L2

,

u = (u,v,w) =
(ud ,vd ,wd)

κT /L
, T =

Td

∆Td
.


(3)

Numerical method

The simulations use a mixed spectral/finite difference algo-
rithm. Periodicity is imposed in the spanwise, y− direction and
derivatives are evaluated with a pseudo-spectral method. The
grid is staggered in the vertical and streamwise directions and
the corresponding derivatives are computed with second-order
finite differences. A low-storage third-order Runge-Kutta-Wray
method is used for time stepping, except for the viscous terms
which are treated implicitly with the alternating direction im-
plicit (ADI) method. The code has been parallelized using the
message passing interface (MPI). Variable time stepping with
a fixed Courant-Friedrichs-Lewy (CFL) number of 1.0 is used.
Time steps are the order of 10−1 s.

Initialization & Domain resolution

The simulation is initialized with an isothermal tank of water at
temperature, Tin = 35◦C and no motion the tank interior. Small
amount of white noise is applied at initial time after damping
outside the bottom boundary. The Prandtl number is chosen
to be Pr = 5. Based values values of the dimensional param-
eters Rayleigh number of the flow is Ra = 5.86× 1011. The
computational grid has 513× 128× 257 points in the x, y and
z directions, respectively. We have checked the grid resolution
by comparing with the Batchelor scale ηb ∼ Pr−1/2(ν3/ε)1/4.
We have followed the criteria l/ηb ≤ π as proposed by [12].
Here, l is the resolution any given direction. Resolution in the
spanwise direction is also confirmed by examining scalar dis-
sipation spectra, 2κk2EΘ′ (shown in figure 2) as a function of
ηbk at three different locations in the domain: inside the bot-
tom boundary layer, the bottom and upper part of the end wall
plume. The present simulations are well resolved ky,maxηb ∼ 2.
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Figure 2: ky spectra of the temperature fluctuations, Θ’ at three
different locations inside the domain. Data are taken at ther-
mally equilibrated state.

The approach to the stationary state solution convergence was
monitored using a time series of the average temperature in the

Figure 3: Three dimensional visualization of the thermally-
equilibrated flow. The vertical slice shows the contours of
the vertical velocity at y = 0.05 m. Iso-surfaces (± 0.3 s−1) of
streamwise vorticity, Ωx as shown at the middle panel and iso-
surfaces of temperature are shown in the front panel. The mean
interior temperature at equilibrium is ∼ 38.5◦C.

tank and also the total heat flux leaving through the bottom base.
The solution was judged to have reached thermal equilibrium
when the net heat flux into the tank was less than 1% of sum
of magnitudes of the individual the heat flux acting from the
bottom surface, i.e.∣∣∣∣Z L

0

Z W

0

∂T
∂z

dydx
∣∣∣∣/Z L

0

Z W

0

∣∣∣∣∂T
∂z

∣∣∣∣dydx≤ 0.01 at z=0

(4)

Results

Flow structures

Thermally equilibrated state was reached after a time, t = 8 hr
in the simulation and flow field is similar to that observed in
previous experimental studies [10, 7]. A large scale overturn-
ing circulation fills the channel and consists of a stably-strafied
boundary layer above the base which is feeding into a strong,
unsteady and narrow plume against the endwall at the heated
end. Fluid leaving the plume in an outflow against the upper
boundary enters the interior, which is characterized by broad
and gradual downwelling.

Details examination of the flow structures inside the boundary
layer is illustrated in figure 3 at steady state (t ∼ 10 hr). The sta-
ble thermocline is maintained above the cooled base and is ad-
vected across the heated half of the base, capping the small scale
convection. But the convection driven by bottom heating erodes
the stable temperature gradient from the beneath. Coherent rolls
which are shown by isosurface of counter-rotating streamwise
vortices, Ωx = [∇×u] · i, are aligned with the boundary layer
flow near the middle of the bottom surface. These coherent rolls
survive for a small distance of ∼ 70− 100 mm from the cold
base. Similar streamwise convection rolls were observed in the
previous laboratory experiments [7] with an imposed heat influx
and a constant bottom base temperature. These vortices have a
strong impact on the temperature field by developing spanwise
corrugations of isotherms as shown by temperature isosurface
of magnitude, T = 30 ◦C in figure 3. (Recently, [2] have ob-
served a similar type of three dimentional convective roll asso-
ciated with spanwise density corrugation during the convective
instability of internal waves at a critical slope.) These counter
rotating vortices interact and merge with each other approxi-
mately 350-400 mm away from the end wall over the heated
base, resulting in fully three dimensional complex structures.



Figure 4: Schematic diagram showing the various forms and
transformations of mechanical energy in a density-stratified
flow of a linear Boussinesq fluid [4]. Quantities associated with
mean flow are denoted by over bar and those associated with
fluctuating components. are primed. The energy within a fixed
volume is stored as kinetic energy, Ek, available potential en-
ergy, Ea, background potential energy, Eb and internal energy.
External energy is supplied to the flow by surface stresses at a
rate Φτ and by net buoyancy input at any level at a rate Φb1. En-
ergy exchanges between Ea and Ek occurs via buoyancy fluxes,
Φz and Φ′z. Conversion between the mean and turbulent kinetic
energy is caused by mean shear ΦT . ε and ε′ are the rates of
viscous dissipation from the kinetic energy reservoir. Transfers
between reservoirs of the available and the background potential
energy include irreversible mixing, Φd , release of internal en-
ergy by molecular diffusion, Φi and differential buoyancy input
at any level, Φb2. In case where the rates of transformation can
be bidirectional, an additional arrow denotes a positive quantity.

Small convective plumes become obvious features and are re-
stricted by the overlying stable gradient of the boundary layer
as shown by isosurface of temperature, T = 38.6 ◦C in the fig-
ure 3. These three dimensional convective mushroom struc-
tures, which penetrate to greater heights nearer the end wall,
are inclined slightly leftward due to the influence of bottom
boundary flow. Eventually, at the end wall, the stable gradient
has been eroded and the convective elements join a turbulent
plume through the full depth of the channel. Vertical tempera-
ture gradient is weak but positive in the interior with a variation
of ∼ 0.02 ◦C over the upper three-quarters of the depth. The
buoyancy frequency N decreases by two order of magnitudes
from the boundary layer to interior (as previously shown by 2D
solution and experiments by [7])

Flow energetics

Following [15] and [4], we define for a linear Boussinesq fluid
the mean kinetic energy, Ek = ρ0/2

R
uiuidV , the turbulent ki-

netic energy, E ′k = ρ0/2
R

u′iu
′
idV , the potential energy, Ep =

g
R

zρdV , the background potential energy, Eb = g
R

z∗ρdV and
the available potential energy, Ea = Ep−Eb, where z∗= z∗(ρ) is
the height at which a parcel of density ρ would reside if the en-
tire density field is allowed to relax adiabatically to equilibrium
(the background state). (·), denotes an average of the quantity
calculated by averaging over the spanwise direction. The rates
at which mechanical energy is transfered between these form is
shown schematically in figure 4 (see [4] for more details.)

For thermally-quilibrated horizontal convection, the

ΦT Φ̄z Φ′z ε ε′ Φi Φd Φb2

0.12 -2.10 -1.42 1.98 1.54 3.52 45.5 −45.5

Table 1: Table for various energy conversion terms (×10−7)
integrated over the whole volume of the box. Values are in Watt.

only non-zero forcing term in figure 4 is Φb2 =
gκT

H
z∗(∂ρ/∂x j)n jdS (i.e. Φτ = Φ′τ = Φb1 = 0 ).

We proceed to evaluate the remaining terms from
the the simulation: ΦT = −ρ0

R
(∂ūi/∂x j)u′iu

′
jdV ,

Φz = g
R

ρ̄w̄dV , Φ′z = g
R

ρ′w′dV , ε = ρ0ν
R
(∂ui/∂x j)2dV ,

ε′ = ρ0ν
R
(∂u′i/∂x j)2dV , Φd = −gκT

R
(dz∗/dρ)(∂ρ/∂x j)2dV

and Φi = −gκT A(ρtop−ρbottom), which take the mean values
given in table 1.

The mean dissipation, ε, and the mean buoyancy flux, Φz, are
the dominant terms in the KE budget. Mean buoyancy flux os-
cillates more, compared to ε, around its mean values over the
steady-state. For the present case the surface buoyancy flux
Φb2 is the dominant source of available potential energy, and
is balanced by the rate dissipation due to irreversible mixing i.e.
Φb2 = Φd . This exact balance also has been predicted by [14]
and [4] .

The total dissipation (ε + ε′) is equal to Φi, which is equal to
total APE−KE conversion (total buoyancy flux, Φz + Φ′z). As
Φi is dependent on the difference of the averaged value of buoy-
ancy ∆ρ between the top and the bottom surface multiplied by
thermal diffusivity, κT , it must equal the total dissipation, which
must equal the total conversion from APE−KE. We argue that
[9]’s conjecture of non turbulence nature of horizontal convec-
tion at the limit of κT → 0 is misleading. At infinite Rayleigh
number, Ra→ ∞ based on κT → 0, ν→ 0, the imposed sur-
face buoyancy flux also vanishes (Φb2→ 0) and we end up with
with zero dissipation from the kinetic energy reservoir and zero
energy influx for the buoyancy field, (Φb2 = 0). (Based on the
same argument the limit of ν→ 0, dissipation from the wind
field also becomes zero, Ref. Eqn. (1.6) by [3]). In contrast, at
a finite value of surface buoyancy flux, available potential en-
ergy is created and returned to the background potential energy
via irreversible mixing. The rate generation of APE and irre-
versible mixing (Φd) are one order of magnitude larger than box
integrated dissipation (and Φi). This demonstrates that consid-
eration of the KE budget alone overlooks the dominant physics
of the flow.

We have also examined APE to KE conversion in four of the
flow regions: (1) lower boundary layer, (2) plume region, (3)
upper boundary region and (4) interior. In particular, compara-
ble and oppositely-signed rates of APE to KE conversion take
place in the plume and interior regions and each is more than
three orders of magnitude greater than the other terms in the ki-
netic energy budget. This reveals that integrating over the whole
volume obscures physically important APE to KE conversion.

The turbulent mixing efficiency for HC is defined as η = (Φd−
Φi)/(Φd −Φi + ε) = 1−Φi/Φd and for the present simulation
of η∼ 0.927. Note that previous definition of the overall mixing
efficiency as η = Φd/(Φd +Φi) by [11] is misleading, because
it will reflect the highest efficiency of η→ 1 even for a station-
ary stratified fluid, where Φi→ 0.

Conclusion

Results based on 3D direct numerical simulation are presented
here at large Raleigh number (Ra ∼ O

(
1012)) for horizontal



convection in a long channel driven by differential heating over
the bottom surface. A strong circulation exists over the en-
tire water column, similar to the earlier experimental observa-
tions. Convective mixed layer is formed over the heated base by
flow parallel role instability and breakdown to small-scale 3D
plumes. At the end wall a large turbulent plume, fed by the bot-
tom convective mixed layer, penetrates through the full depth
of channel. Importantly, the simulation shows how horizontal
convection can be vigorous while satisfying the constraint of
[9]. The results shows large conversions of available potential
energy to kinetic energy by buoyancy flux in the end wall plume
and the reverse in the interior of the circulation. A large value
of turbulent mixing efficiency, η∼ 0.927 claims that horizontal
convection is highly efficient in the sense that a strong over-
turning circulation and irreversible mixing occurs with minimal
viscous dissipation.
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